Sajeev John, photo by Rob Waymen
Sajeev John, photo by Rob Waymen

Thirty years ago, many scientists said U of T’s Sajeev John was chasing the impossible — that he was asking questions for which the answer was simply “no.” But that didn’t deter the young physicist from setting out on an expedition to trap one of the most elusive beasts known to humanity: the photon.

Photons, which are elementary particles of light, have no mass and no electrical charge. In a vacuum, they move at nearly 300,000 kilometres per second. Most challenging of all, common, impure materials absorb photons the way a sponge absorbs water.

“You can use mirrors to trap photons for a short period of time, but then they’ll escape or get absorbed,” says John, who was the inaugural winner of the Connaught McLean Award in 1997. “You have to use materials that just don’t absorb light. That was a big part of the challenge.”


Big breakthroughs in research can’t be achieved until the
fundamentals are understood. This is called “basic” research. Created from a gift from alumnus and benefactor William F. McLean, and matched by Connaught funds, the McLean Award supports an emerging leader conducting basic research in physics, chemistry, computer science, mathematics, engineering sciences or the theory and methods of statistics.

Amount: $100,000

While John was working out how to trap light, he also found himself having to justify why. He began with a typical scientist’s take that very fundamental questions are worth answering for their own sake.

“Sometimes small questions of science, when investigated thoroughly, lead to extraordinary answers,” he says.

But once he succeeded, entrepreneurs quickly took notice. John’s light traps — known as photonic crystals — offered an entirely new way to control light. Computer chips operating with laser light. Medical biosensors. Less expensive, more efficient solar panels. Next-generation fibre optics.

“During the telecom bubble, I was getting lots of calls from venture capitalists, but I decided not to take their money at that time,” he said. “Today, there are certainly big companies and labs that are pursuing applications.”

One application that currently holds John’s attention is “Lab on Chip” medical biosensors that can supplant lengthy diagnosis processes.

“You use a thin photonic crystal chip with channels through which a blood sample can flow,” he says. “You place certain antibodies along the interior surfaces of the crystal that act as chemically selective ‘mousetraps’ for biological markers of certain diseases. When the ‘mice’ attach to the surface, it changes the chip’s optical characteristics. You shine a laser beam through that chip and create what we call a ‘spectral fingerprint’” of the disease.

Instantaneous diagnosis.

The major challenge: even after more than a decade of research, precise light traps are costly to make.

A photonic crystal is made up of a delicately-sculpted, diamond-like clusters of atoms, which don’t absorb light. Light wavelengths are large compared to single atoms, which means scientists must create lattices with billions of atoms in a precise repeating pattern, attuned to the wavelength of the photons they’re trying to trap and hold. Every time a photon tries to move in any direction, it instantaneously bounces back on itself. The photon never stops moving, but never gets anywhere.

“It is quite doable for well-funded research labs and companies, but it’s still expensive and requires specialized equipment to make high quality crystals,” John says.

Since John first started exploring them in the 1980s, photonic crystals have continued a slow but steady march toward commercial applications. Meanwhile, the academic world has been solidly behind John’s “small question with extraordinary results.”

John won the Connaught McLean Award a decade after he published his first major papers on photonic crystals. Even though the value of his research was established by then, he says the award still gave him a major motivational boost.

“The McLean Award was one of the first awards I ever received,” he says. “That certainly had a personal impact in terms of pure encouragement. And of course, it allowed me to expand my research group.”

Leave a Reply

Your email address will not be published. Required fields are marked *