This invention describes a diagnostic platform for viral, bacterial, protozoan, fungal and other infections, which allows an exponential amplification of desired nucleic acid molecules at an isothermal condition and simultaneous detection of multiple infectious genetic biomarkers using Recombinase Polymerase Amplification (RPA) and Quantum Dot (QD) barcodes respectively. Integrating mobile-cellular devices with multiplex molecular diagnostics can potentially provide the most powerful platform for tracking, managing and preventing the transmission of infectious diseases. With over 6.8 billion subscriptions globally, handheld mobile-cellular devices can be programmed 5 to spatially map, temporally track and transmit information on infections over wide geographical space and boundaries. Here we combined recent advances in quantum dot barcode technology with smartphones to engineer a simple and low-cost chip-based wireless multiplex diagnostic device. This device can analyze 20 μL of sample for multiple genetic biomarkers with an analytical sensitivity of 1 – 5 fmol/μL. The addition of an isothermal amplification step enabled the detection of patients infected with HIV and/or hepatitis B from isolated nucleic acid from serum, and identified viral infection in only 1 hour, after blood collection to final read-out. This device advances the capacity for global surveillance of infectious diseases at or near the point-of-care and has the potential to accelerate knowledge exchange-transfer of emerging or exigent disease threats with healthcare and military organizations in real-time.
Ian Stewart
Innovations & Entrepreneurship Manager
Innovations & Partnerships Office (IPO)
(416) 946-7734