U of T Technology & Startup Explorer

Glucose-Responsive Microgels and Microneedle Patch to Prevent Hypoglycemia in Diabetics

This device is a composite transdermal microneedle patch comprising a microneedle array and embedded microgel particles.  The microparticles are made from three types of monomers – one provides glucose-responsive volume change, one for stabilizing native glucagon, and one for facilitating glucagon encapsulation. After the microneedle patch is applied, the microneedles penetrate the skin, swell quickly in the interstitial fluid, and enable the microgels in contact with the fluid and glucose. The microgels shrink at low glucose levels squeezing the encapsulated glucagon out, which then diffuses out of the needles to the blood circulation and to the liver thereby increasing blood glucose levels. The entire process automatically proceeds without external intervention of patients or care givers. Using the invented microgel system, the glucagon can maintain native structure and bioactivity at body temperature and under the conditions of making microneedle array.

Read more...

Keywords:

Therapeutics, Medical Devices

A Handheld Skin Printer for Treatment of Burns and Deep Wounds

Deep skin wounds, such as those caused by burns, are usually treated by harvesting skin from healthy regions of the body and redistributing them onto the wound area.  However, challenges arise when large areas are affected and donor sites are scarce.  In such cases, the available healthy donor skin is often insufficient for autografting, leaving a large portion of the wounded area either ungrafted, allografted, or uncovered, and resulting in poor outcomes.  Use of regenerative cells and materials are one possible solution, with cells often demonstrating a better outcome.  However, methods to transfer viable cells onto wound areas remain a challenge.

Read more...

Keywords:

Medical Devices, Biomaterials

Inducing Directed Migration (Translocation) of Neural Cells Using Electric Fields

A clinically-relevant stimulation system can induce directed migration (translocation) of neural precursor cells using asymmetric balanced biphasic electric fields.

Read more...

Keywords:

Medical Devices, Neurological Disorders, Sensory Systems & Rehabilitation

Selective Enhancement of Electrical Nerve Excitability

Treatment of overactive bladder and other disorders via non-invasive electrical neurostimulation.

Read more...

Keywords:

Companies, Medical Devices, Medical Implants & Prosthetics, Neurological Disorders, Advanced Health Technologies, Software

VPRI Contact

Staff

Jennifer Fraser

Director, Innovations
Innovations & Partnerships Office (IPO)
(416) 946-5515